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LOOSE BLOCK INDEPENDENCE 

BY 

M A U R I C E  R A H E  AND LAIF SWANSON 

ABSTRACT 

A finite state stationary process is defined to be loosely block independent if 
long blocks are almost independent in the f sense. We show that loose block 
independence is preserved under Kakutani equivalence and )7 limits. We show 
directly that any loosely block independent process is the f limit of Bernoulli 
processes and is a factor of a process which is Kakutani equivalent to a Bernoulli 
shift. The existing equivalence theory then yields that the loosely block 
independent processes are exactly the loosely Bernoulli (or finitely fixed) 
processes. 

1. Introduction 

In their studies of Kakutani equivalence, Jack Feldman and Anatole Katok 

independently introduced a monotone matching metric, now called fi They use it 

to define loosely Bernoulli, a notion analogous to very weak Bernoulli with the 

new metric replacing Ornstein's d. The loosely Bernoulli property is seen to play 

a fundamental role in the equivalence theory since a process is loosely Bernoulli 

if and only if it is Kakutani equivalent either to a Bernoulli shift (independent 

identically distributed process) or to a rotation of the circle [1, 3, 6]. 

In this article we introduce another f concept called loose block indepen- 

dence, analogous to Paul Shield's d notion of almost block independence. This 

property is stable under building towers, inducing on sets, taking factors, and 

taking f-limits. The collection of loosely block independent processes is easily 

seen to contain all Bernoulli shifts and circle rotations and hence must contain 

their entire Kakutani equivalence classes. 

Moreover, the Bernoulli processes are f-dense in the class of loosely block 

independent processes; and every loosely block independent process is a factor 

of a transformation which is Kakutani equivalent to a Bernoulli shift. The 

standard equivalence theory [6] yields immediately that the loosely block 
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independent processes are exactly those which are Kakutani equivalent to 

Bernoulli shifts or to rotations. 

2. Definitions 

Let A be a finite index set. Throughout  this article T will be an invertible 

measure preserving transformation on a probability space (X , ~ ) ;  and P = 

{P, : a E A} will be a measurable partition of X. The process (T, P) determines a 

distribution measure (which we shall also denote by p.) on A z, the space of all 

doubly infinite sequences from A. For n a positive integer, the projection of /x  

onto A"  will be denoted by /_t°. 

We recall the following definitions. F o r . B  C_ X, /x ( B ) >  0, and x E B, the 

return time is n (x) -- inf{k > 0 : Tkx E B}. This function is finite a.e. and defines 

the induced transformation TB by T~(x)= T"(X)x. The notion dual to that of an 

induced transformation is that of a tower transformation. If h is an integrable 

function on X with values in the set of positive integers, we define the tower 

space X" by X" = {(x, i):  1 =< i <_- h (x)}, with normalized measure inherited from 

that on X. The tower transformation T h is defined by T"(x , i )  = (x,i + 1) for 

1 <-_ i < h(x)  and T"(x, h(x))  = (Tx, 1). A partition P on X extends to a standard 

partition P" on X" consisting of the complement  of the base of the tower 

adjoined to the collection of sets in P. 

Transformations T and S on spaces (X,/z ) and (Y, ~,), respectively, are said to 

be Kakutani equivalent if there exist sets B C X,/.t (B)  > 0 and C _C Y, v (C)  > 0 

with TR isomorphic to So Equivalently, in the dual formulation T and S are 

Kakutani  equivalent if there exist tower functions h and k with T" isomorphic 

to S k. 

In this paragraph we sketch the essentials of the f -metr ic .  Let A be a finite 

index set and let n be a positive integer. For x, y ~ A n we define f ( x , y ) =  
1 - k/n, where k is the largest integer for which there exist sequences iz < i2< 

• "" < ik and j~ < j 2 < "  " ' "  < f l  such that x(it) = y(jt) for 1 =< l =< k. For processes 

(T, P)  and (S, O)  indexed by the same set A, with corresponding distributions tz 

and u on A z, we set f , ((T,  P), (S, O ) ) =  fox, ,  v , ) =  inf{e : there is a measure p 

on A n x A n with marginals /z ,  and ~,, such that p { ( x , y ) : f , ( x , y ) <  e } >  1 -  e}. 

We further define f((T,  P), (S, O))  = [(Ix, u) = lim sup f ,  ((T, P), (S, O)). 

Given a process (T, P), the independent  N-blocking,  (T, P)N, of (T, P)  is the 

(usually non-stationary) process associated with the product measure (tzN) z. 

DzFIsrr~os. A stationary process (T, P)  is loosely block independent  (LBI) if 

for every e > 0 there exists an integer M so that f ((T,  P), (T, P ) N ) <  e for all 

N>=M. 
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3. Kakutani stability and f-closure 

PROPOSITION I. The class of LBI processes is f-closed. 

PROOF. We claim that if [((T, P), (S, Q)) < e and if (S, Q)  is LBI, then for all 

N sufficiently large we have f((T, P), (T, P)N) < 3e. For if M is sufficiently large, 

then for all N _-> M we have fN ((T, P), (S, Q))  < e. Moreover, for the same N we 
have f ((T,P)N,(S,Q)N)<e.  However,  if M is also so large that 

f ( ( S , Q ) N , ( S , Q ) ) < e  for all N_->M, the triangle inequality yields 

fN((T,P),(T,P)N)<3e. 

PROPOSITION 2. If (T, P) is LBI and Q is any partition Q C V ~_~ TiP, then the 

factor process (7", O) is also LBI. 

PROOF. It iS clear that for any positive integer k, the process (T, Vkk TiP) is 
LBI. Hence, for any partition () C_ Vk-k TiP, we also have that (T, 0 )  must be 

LBI. However,  since O C_ V ~  TiP, there exists a sequence of partitions {Ok} 

with Ok C Vk~ TiP such that [((T, 0k) , (T,  O))--~0. 

REMARK. A transformation T has one generating partition P for which 

(T ,P)  is LBI if and only if (T, Q)  is LBI for every generating partition Q. 
Consequently it makes sense in this case to refer to T as loosely block 

independent. 

The following two propositions show that being LBI is an invariant of 

Kakutani equivalence. 

PROPOSITION 3. If (T,P) isan LBIprocess, B i s a s e t w i t h B ~  V ~ T ' P ,  and 
Q = {Qc :c ~ C}C_ V== TiP is a finite partition of B, then the process (Ts, Q) is 

LBI. 

PROOf. By the preceding proposition we may assume that the partition P 

consists of the complement of B adjoined to the set of atoms given by the 

partition Q on B. Since LBI processes are ergodic, the result follows im- 

mediately from the ergodic theorem and the following observation. For arbitrary 

N, let rN be the greatest integer in Nfz (B). Then for large N the distribution 

0z,N) z on C z given by (T~, O)  is [-close to the distribution (p.~)z on C z obtained 

from (T, P) by deleting outputs in the complement of B and renormalizing. 

PROPOSITION 4. Let (T, P) be LBI and let h be a function measurable with 
respect to V ~  T~P, taking values in the positive integers. If T" represents the 

transformation on the tower and ph is the standard partition of the tower, then the 

process (T h, ph) is LBI. 
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PROOF. As before, we may assume that h is measurable with respect to the 

partition P itself. Reversing the argument in the proof of the preceding 

proposition yields the desired result. 

4. Bernoulli processes are f-dense 

It is almost immediate from the definition that Bernoulli shifts and rotations 

are LBI. Moreover,  since the LBI property is stable under Kakutani equivalence 

and f-limits, the set of LBI processes must contain the f-closure of the classes 

Kakutani equivalent to a rotation or a Bernoulli shift. Indeed, as we show in this 

section, the LBI processes contain only processes in this closure; the family of 

LBI processes is the smallest f-closed class containing the Bernoulli processes. 

We recall the following definitions [5]. For a process (T, P)  taking values in 

{0, 1} z, an N-cell is an event characterized by the occurrence of a sequence 

011 - • • 10 of length N + 1, consisting of zero, followed by (N - 1) ones, followed 

by zero. An (N, 8)-process is a stationary binary process such that the probability 

of being in an N-cell at time-zero is at least ( 1 -  6). As shown in [5], for any 

choice of N and 6, there exists an (N, ~)-process which is a factor of a Bernoulli 

shift. 

PROPOSITION 5. For each e > 0 and LBI process (T, P), there exists a process 

(S, 0 ) ,  which is a factor of a Bernoulli shift, such that f((T,  P), (S, O)) < e. That 

is, the factors of Bernoulli shifts are f-dense in the LBI processes. 

PROOF. Choose N such that f ( ( T , P ) , ( T , P ) N ) < e / 2 .  Let (S ,  W,) be an 

(N, e./2)-Bernoulli process. Let (S,,, W.) be the (infinite entropy) Bernoulli shift 

determined by the product measure Az where A is Lebesgue measure on the 

unit interval [0, 1]. Let /z denote the distribution on A z determined by the 

process (T, P). Choose any block code /~ :[0, 1] N---> A N such that AN(/~-~(a))= 

I~N(a ) for each a E A N; and define a shift invariant measure preserving map q6, 

called an almost block code, from the product (S,,, W~,)× ( S ,  W~) to A z as 
^ N + I  i follows: the time-zero output (4~(w,,. wO). will be h((w.):_, ). provided the 

time-zero output of w, lies in the i-th position of an N-cell, otherwise 

(¢p(w,,,w~)),,= a,. The process given by &((So, Wo)× (S~, W, ) ) i s  the desired 

(S, O), for it is clear that f((S,  O), (7, P )N)<  e/2. The triangle inequality then 

yields f((S, Q), (T, P ) ) <  e. 

COROLLARY. The LBI processes are the f-closure of the Bernoulli processes (or 

very weak Bernoulli processes, or finitely determined processes, or almost block 

independent processes ). 
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LEMMA (3. Let (S, Q)  be a process on sequence space B ~. Let & and ~b be 

almost block codes from B z to C z satisfying the following conditions: 

(1) both & and th take their block structure from the same (N, 3)-process and 

agree outside N-cells, and 

(2) fN (49(Xff, ~b(xff) < e for all sequences x from (S, Q)  having the time-zero 

output located at the beginning of an N-cell, except on a subset of conditional 

measure e. 

Then there exists a transformation S', which agrees with S except on a set of 

measure e, and a partition Q', which agrees with 49 ~(C) except on a set of 

measure 2(e + l /N) ,  such that the process (S', Q') has the same distribution as the 

process ~b(S, Q). (Note that S' and Q'  are measurable with respect to V~S~Q,  but 

not necessarily with respect to the sub-it-algebra generated by 49.) 

PROOF. For fixed x, the strings 49(xff and t)(x)~ have a monotone matching 

yielding their f-distance. This monotone match then assigns each integer index k 

between 2 and N to one of two classes: k = m, ( j )  if 49(x)k is the j-th element 

matched, whereas k = u , ( j )  if 49(x)k is the j-th element unmatched; and 

similarly for m,(j') and U,(l"). Define a permutation S of the entries in ~b(xffin 

the following manner: set bk = ~b(x),,,,tj~ if k = u , ( j ) ;  alternatively set bk = 

~b(x),n,,,tjl if k = m,( j ) .  Then 

I{k: bk# 4 9 ( x ) k } l / ( S -  1)-- <- fN_j(49 (x)~, ~(x)7). 

Moreover,  there exists a set K of indices between 2 and N such that the induced 

map given by the permutation S above, restricted to K, agrees with the 

restriction of the permutation taking k to k + l, where the cardinality I KI is at 

least [ 1 -  fN ~(49(Xff, ~b(xf f ) ] (N-  1). The entries in b~ determine the partition 

Q '  and the permutation S determines the map S'. 

THEOREM 7. If (T, P) is an LBI process taking values in A z then there exists 

a process (S, Q) with the same distribution as (T, P), where S is Kakutani 

equivalent to a factor of an infinite entropy Bernoulli shift. 

PROOF. Fix an arbitrary finite alphabet W and set W~ = W for i = 1 , 2 , - . . .  

Let W~ × W2 z • • • be the generating partition of an infinite entropy Bernoulli 

shift /~. Let /~ be an infinite entropy Bernoulli shift which is uniformly 

distributed on [0, 1]. Our desired Bernoulli shift B will be the product of /3  and 

/~; and W will denote a generating partition for it. For each positive integer N, 

the partition W N will have no atoms; and this fact will facilitate the construction 

of block codes of length N. On the other hand, we will use the independent 
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factors o f /~  generated by the W~ to construct (N, 6) processes for larger and 

larger N and smaller and smaller 8. 

Let e~ j, 0 satisfy Ee, <o0 and choose N, such that f((T,P),(T,P)M)<e~/9 
for M _-> N~. Take ,~,(B, WI) to be an ( N ,  e,)-process, and let 4', be the almost 

block code described in Proposition 5. That is, 4', takes its block structure from 

,fl(B, WI) and assigns names inside blocks from a block code so that 

[((T,P),4'dB, W))<e2/9. Note that 4', may be chosen to depend only on 

finitely many, say k,, coordinates. (See [5].) Denote by (S~, 0,) the process 

4',(u, w). 
Now choose N2 such that k,/N2<e2, and such that for M>=N2 we have 

[((T, P), (T, P)M) < e2/9. Let ~2(U, W2) be a n  (N2, e2)-process. Then there are 

two natural almost block codes, which we denote by t02 and 4'2, which take their 

structure from s%(B, W2) and satisfy the following conditions: 

(1) qJ2 agrees with 4,1 inside N2-blocks, except in the first or last k~ places, 

where it is defined arbitrarily; 

(2) 4'2 has the same distribution as (7, P) inside N2-blocks; 

(3) since f((T, P), tkl(B, W ) ) <  e2/9, the map ~2 can also be made to satisfy 
- -  N 2 N 2 fN2(qJffx), , 4'2(x)i ) <  e, for all sequences x with time-zero at the beginning of 

an N2-cell, except for a subset of conditional measure less than e,. 

Lemma 6 guarantees that by changing B and 4 ' / ' (A ) on sets of measure e ,, we 

obtain a process ($2, 02) with the same distribution as 4'2(B, W). The change 

does not affect the independent distribution of W3 x W4 x . - . .  

We continue inductively. At the n-th stage we have a process (S._~, O.-~) = 

4'.-1(B, W), where 4'.-1 depends on k.-i coordinates of the output of the product 

of /~  and the first (n - 1) copies W~ x .. • x Wo-z. Because (T, P) is LBI, there 

exists an integer N. such that k . -dN.  < e., and such that f((T, P), (T, P)~)  < 

2]9 for all M ~ N.. Let ~:. (B, W.) be an (N., e.)-process. (The output sequences 

of the process (B, W.) may have been changed in the process of transforming S, 

to S. ~; however, it remains an independent process.) Use ~e.(B, IV.) to get an 

N.-block structure for the almost block codes ~O. and 4'. satisfying the following 

conditions: 

(1) ~0. agrees with 4'.-1 except for locations within k._~ of the ends of 

N.-blocks, where it is defined arbitrarily, 

(2) 4'. has the same distribution as (T, P) inside N.-blocks, 
N N 

(3) fN.((~0.(x)~", 4~.(x)~"< e.-~ for all sequences x having time-zero at the 

beginning of an N.-block, except for a set of conditional measure e._~, 

(4) the names within an N.-block are determined by partitions of the factor 

space given by the product o f /~  and the independent processes generated by 
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W~ × . - .  × W,_~. Since Y~ el < ~ ,  there exists a limit transformation S', with S' 

Kakutani equivalent to S, as well as a limit partition Q'. Since (S', Q') is the 

f-limit of the (S., Q.) ,  it must have the same distribution as (T, P). 

5. Loosely Bernoulli and finitely fixed 

Loosely Bernoulli (or finitely fixed) transformations are known to be exactly 

those which are Kakutani equivalent either to Bernoulli shifts or to circle 

rotations. The class of loosely Bernoulli transformations is the f-closure of the 

Bernoulli shifts, and by Proposition 5, must be the same as the class of LBI 

processes. In fact one can see directly, as in [4], that loosely Bernoulli implies 

loosely block independent. 
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